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Abstract. Using a model hat includes both eleclronic and shuclural degrees of freedom we 
study onedimensional struclures that are non-periodic but delermiNstic. 'me model allows us 
to follow srmctural changes induced by changing the number of eleclrons (i.e., upon doping). 
Special emphasis is put on localization versus delocalization of the orbitals as a means of 
estimating the conducting properties To this end various measures for quantifying the degree of 
localization are compared and a new one-based on an autocorrelation function of the elecimn 
density-is presented. As an example of the application of our model we examine the Fibonacci 
smcture in detail. It is found that the well known self-similarily in the density of slates of the 
undistoned system may be lost upon relaxation and/or doping. AS a general result o w e d  both 
for Fibonacci slrucnres and for other quasiperiodic and incommewrabk systems we find !hat 
those orbitals 1hA become h-cupiedlemptied upon doping increase their localization indicating 
less variability of lhe conductivity. 

1. Introduction 

Electronic and vibrational properties of systems for which the potential is incommensurate 
with the underlying nuclear backbone continues to be of interest. Such situations occur in, 
e.g., charge-density-wave (CDW) systems such as the MX3 materials (M = transition metal; 
X = chalcogenide) (see e.g., [I  I) as well as for crystals in magnetic fields (for a recent 
reference, see [2]). Some of the first studied materials within this concept include MnAu3 
[3], NaN02 [4], Hg3-,AsF6 [SI, and Na2C03 [6] .  The subject gained renewed interest as 
unexpected diffraction pattems for an icosahedral phase of the Alo.86 Mno.l4 alloy (a so-called 
quasicrystal) were reported by Shechtman et al 171. These pattems indicated the existence of 
ordered but aperiodic ('quasiperiodic') structures. It was subsequently demonsmted [S, 91 
that one may understand these as the diffraction pattems of a regular higher-dimensional 
lattice projected onto the three-dimensional space. As a onedimensional analogue one 
may construct systems with quasiperiodic potentials by projecting two-dimensional regular 
lattices onto certain lines (see, e.g., [8,91). 

In this context the Fibonacci lattice has been considered as the one-dimensional 
prototype of the quasicrystals [lo, 111. 

Another reason for the interest in Fibonacci lattices is that they possess a self-similar 
density of states [12-171 whereas generalized Fibonacci structures of higher order can lose 
this characteristic [181. 

Onedimensional quasiperiodic structures are, moreover, of direct experimental 
relevance after the reports of successful synthesis of quasiperiodic GaAs-ALAS [19,20] and 
Nb-Cu [21] heterostrktures. Moreover, it has recently been argued [22] that quasiperiodic 
magnetic lattices may be used in polarizing neutrons. 
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In the present work we will distinguish between incommensurable and quasiperiodic 
structures by defining the latter as systems for which the on-site energies (see below) only 
take a few discrete values, whereas for the former they span a continuous, finite interval. 
The Fibonacci chain is an example of a quasiperiodic chain. 

One of the central issues in the studies of quasiperiodic and incommensurable one- 
dimensional sfructures is to what extent the (electronic, vibrational, photonic, etc) states are 
localized. It is well known that-within a single-particle picture-all states are delocalized 
for a purely periodic infinite one-dimensional system, whereas for the equivalent random 
system they are all localized [23-251. On the other hand, incommensurable one-dimensional 
systems have both localized and delocalized states separated by mobility edges [26,27] 
whereas all states of the infinite Fibonacci chain are critical [14,16,27,28]. However, 
synthesized quasiperiodic systems have finite lengths, in which case the separation into 
localized, delocalized, and critical states is less obvious. Moreover, 'localization' is not 
uniquely defined. Thus, in a number of studies the classification into localized and 
delocalized states is performed merely by a subjective look at selected states (see, e.g., 
[29-40]). Only recently have more direct measures of the degree of localization been 
introduced. These include the resistance as calculated by the Landauer formula [41-45] and 
the thereto-related inverse localization length l46.471. Moreover, the Lyapunov exponent 
has been used, e.g., by Das Sarma et a/  148,491 and by Farchioni et a/ [50]. On the other 
hand, Hirose et a1 [5 11 used the inverse participation ratio, whereas Varga et a1 [52] studied 
both the spatial filling factor and the structural entropy. Finally, Pnevmatikos et a/ [53] 
used the participation function, which is equivalent to the information entropy of Varga et 
ai [52]. 

One of the objectives of the present work is to compare various of the proposed measures 
for a simple system for which an intuitive feeling for the localization is easily developed. 
In addition we shall propose a new measure that seems to be consistent with the immediate 
expectations. This will form the basis of section 2 

Subsequently, we shall report results of a theoretical study of the electronic properties 
of onedimensional quasicrystals. In the case of more or less localized states it may be 
speculated that the conducting properties of these materials can be varied over many orders 
of magnitude by controlled doping. However, the system may respond to the doping 
by modifying the underlying lattice structure thereby ultimately leading to changes in the 
localization of the orbitals. A further purpose of the present work is therefore to present a 
model that takes this effect into account. To our knowledge there has only been one related 
study aimed at this interplay between structure and localization in incommensurable one- 
dimensional systems [531. Our model is related to but differs in important aspects from that 
of Pnevmatikos et a1 [531. Moreover, Pnevmatikos et a1 focused on an incommensurable 
structure whereas we shall concentrate on a quasiperiodic system. 

We write the total Hamiltonian of our system interest as a sum of an electronic part and 
a lattice part. For the electronic part we use a tight-binding Hamiltonian 

Here, 2" and 2! are the annihilation and creation operators, respectively, of an electron 
on site n ,  E ,  are the on-site energies, and tn.n+l the nearest-neighbour hopping integrals. 
We shall here for the sake of simplicity neglect the spin variable and allow thus each 
orbital to contain up to two electrons. Furthermore, we include only one orbital per site. 
As a representative example of a quasiperiodic system we study the Fibonacci lattice for 
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which the on-site energies E. take one of two values according to the Fibonacci sequence. 
Alternatively, one may allow the hopping integrals to oscillate. This possibility will, 
however, not be considered here. It should be mentioned at this point that the Fibonacci 
chain has been the subject of a number of other theoretical studies (see, e.g., [351, 1381, 
1391, 1471, [501, [511 and [54]). However, as a (more realistic) generalization we will here 
allow the hopping integrals f.,,+l to depend on the bond lengths, such that the system is 
allowed to react against doping. This will be discussed in detail in section 3. A detailed 
discussion of the results for the Fibonacci lattice is presented in section 4 and some other 
quasiperiodic and incommensurable systems for which the on-site energies E" are non- 
periodic but deterministic will be discussed briefly in section 5. We conclude in section 6. 
For the sake of completeness we add that a preliminary version of the present work has 
been published elsewhere [55]. 

2. Degree of localization 

We consider a ring molecule or a linear chain consisting of a large number N of sites. For 
this we solve the Schrodinger equation 

where pa is the Wannier orbital of the nth site. In our own calculations we shall exclusively 
consider ring molecules. In order to quantify the localization of the ith eigenfunction we 
define an autocorrelation function Gi(m) of the electronic density as 

We use the first 20% of the terms in fitting to a Gaussian by minimizing: 

- lnG;(O)exp[-a(i)(m - 4)'] G i b )  + Gi(m + I )  
2 

By studying the average of Gi(m) and Gi(m+ 1) we smear out certain oscillatory behaviours 
that occur in Gi(m),  e.g., for solitons in trans-polyacetylene. Since our typical system size 
is 200-400 sites we use typically Np 50 terms in the fit. a(i) is subsequently used as 
our measure of the degree of localization. Since a(i) is larger (smaller) for m m  localized 
(delocalized) states we may relate a(i)  to an inverse localization length. a(i) is in addition 
related to the participation function P ( i )  [Gi(O)]-' of F'nevmatikos et (I[ 1531. By 
studying the autocorrelation function we obtain information about the localization of our 
state of interest independent of where it is actually localized. The parametrization (4) is a 
way of quantifying the short-range to intermediate-range behaviour of the function Gi(m) 
with a single parameter a(;). In fitting with a Gaussian we indirectly assume the state to 
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be localized inside a potential of approximately harmonic shape. We stress that this way 
of quantifying the localization is independent of the type of system and is computationally 
efficient. 

Alternatively, one may quantify the localization using quantities related to the Lyapunov 
exponent, which for self-averaging systems is 

K Schmidt and M Springborg 

Here, M;(E)  is the ith 2 x 2 bansfer matrix. One may show [56] that 

Das Sarma er al [48,49] used instead y(i) I (I/N) In Ic~+l.;/cl.;l for finite system sizes 
N .  y(i) quantities the degree of localization far away from the region where the state is 
actually localized Thus, y ( i )  may be better in describing the localization for large systems, 
but for our systems of interest (polymers or semiconducting heterostructures as presently 
synthesized in the laboratory) the system size N may only be considered intermediate and 
we therefore consider o(i) more appropriate. 

Varga er a1 [52] studied the spatial filling factor q ( i )  defined as 

q( i )  = P(i)/N = [G;(O)]-’/N. (7) 

Finally, various measures based on the Landauer formula [41,57] have been used. This 
formula gives the resistance r; of the ith orbital of a finite system embedded into a perfect 
material with no resistance: 

r; = (2rrh/e-)pi (8) 

where 

pi = (1/[4 - (&i/Vo)]}\(M:)’ + (ME)’ + (M$)’+ (MY)’ 

+(&;/Vo)(M: - M f ) ( M t - M $ ) - [ & ~ / V ~ ] M ~ M ~ - 2 }  (9) 

with &; being the eigenvalue of the ith orbital, VO an external potential (we choose V, = 
50.0 eV). Instead of studying p; directly we will consider In(pi + I). At this point it is 
relevant to mention that Das Sanna and Xie [58] have also considered the resistance of a 
quasiperiodic system. They, however, did not study the resistance as a function of orbital 
index i but as a function of the energy of the incoming electron. On the other hand, in 
applying equation (9) we implicitly assume the ith orbital to define the Fermi level, which 
may or may not be true but which allows a detailed look at each orbital separately. 

In order to compare a(i), P ( i ) ,  y ( i ) ,  q(i) ,  and ln(pi+ 1) we examined a simple system 
consisting of a potential well formed by ten neighbouring sites inserted into a ring of 100 
atoms. We use the Hamiltonian ke of equation (1) and set the one-site energies E. of the 
sites forming the potential well equal to -50 eV below those of the others. All hopping 
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integrals were set equal to 2.5 eV. In figure 1 we show In@, + 1). a(i), q(i), and y ( i )  
of this simple system (notice that P ( i )  and q ( i )  are related through equation (7)). In 
studying y ( i )  and pi we neglect the conceptual problems in using (6) and (9) for a ring 
molecule. The ten orbitals with the lowest energy are those localized inside the well and the 
resistance of these orbitals is correspondingly very high. From the first to the tenth orbital 
the resistance decreases as larger pans of the orbitals protrude from the well. a(i) shows 
a thereto related behaviour, whereas the spatial filling factor q( i )  lacks this characteristic 
differentiation between the energetically lowest orbitals. Momver, the inverse localization 
length y ( i )  appears not to be correlated with the resistance of the states and thus with the 
intuitively expected behaviour. It is moreover noticed that In@, + 1) increases as a function 
of i for i > 10 with an approximately constant slope, whereas a(i)  is roughly constant in 
this interval. This difference can be explained from the dependence of pi on the external 
potential Vo (see equation (9)). On the other hand, q( i )  shows some variation for i  between 
5 8  and 67, which appears to be uncorrelated with the actual localization or shape of the 
orbitals. 

Figure I. (a) The resistance In(pi + I) ,  (b) our criterion of the degree of localization ct(i), (c) 
the spatial filling factor q W .  and (d) the inverse l d i r a t i o n  length y ( i )  of apolential well of 
ten neighbouring atoms with omsite energies Q = -50 eV emMded in a ring of 1W atoms 
with f" = 0. All quantities are shown as functions of orbital index i .  

In order to obtain an idea of the quality of the fit of equation (4) we add that for the 
first ten states A( i )  lies in the range between 0.1 and 0.2, and for the extended states (i = 
11-110) A(i) is less than 0.1. Since the fit of equation (4) involves only one parameter, 
we find this quality satisfactorily. In total a(i)  is accordingly seen to correlate well with 
the actual localization, and we shall therefore use this measure throughout the rest of the 
paper. 
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3. The model 

In order to study the structure and the electronic orbitals of arbitmy chains or ring molecules 
consisting of two types of atom (A and B) and having one orbital per site-we use a modified 
Su-Schrieffer-Heeger (SSH) [5%61] model. Our model Hamiltonian H contains thereby 
one (tight-binding) part He for the electrons (see equation (1)) and a remainder (Hi) for the 
lattice energy: 
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A = He + HI. (10) 

The hopping integrals tn,.+l are linearized in the bond lengths: 

&..+I = t o  - a(u,+~ - u.) (11) 

which is a good approximation for small displacements U, of the atoms. to is the hopping 
integral for the undisturbed system (U, = 0) and a is an electron-phonon coupling constant. 
The on-site energies 6" take two values and CF, depending on the type of the corresponding 
atom. 

The lattice energy AI is written as 

The Kronecker symbol ensures that the second term on the right-hand side vanishes for 
identical neighbours. 

We define the neutral system as one with one electron per site and seek then for given 
EA. ha, ro, and (I the constants Kt and K2 such that the average Iu,I is as small as possible 
for the structure with the lowest total energy Emt = Et + E,. We shall refer to this system 
as the rigid one. 

In addition we study systems where we take over the parameter values of SSH except 
for the two different types of on-site energy. This system will be called flexible. Compared 
with the model of Pnevmatikos et (11 [53] we have defined the neutral system as one with 
one electron per site, whereas they use zero electrons per site. Therefore, Pnevmatikos et 
a1 have K 2  = 0. 

Since we are interested in lattice relaxations it is crucial to be able to optimize the 
structure automatically for any given number of electrons. This is achieved by using the 
forces as follows. 

According to the adiabatic (Bom-Oppenheimer) approximation the motion of the atoms 
is described by trajectories following Newton's law [6264]: 

mu, = F,, = -aE,jau,. 

The force F, is the sum of a lattice part 

(13) 

F1.n = - K i @ n  - U ~ + I  - ~ n - 1 )  - K2(&8.cfl+, - L , c n - t )  (14) 

and an electronic part 

Fe," = - k ( P n , n - i  - p n . n + ~ ) ,  (15) 
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Here, Pn,m is the bond-order matrix 

i=l 

where bi is the occupation number of the ith orbital. 
The optimal geometry is calculated iteratively using 

with e << 1 and j being an iteration index. is proportional to the square of a time step. It 
should be mentioned here that the identification of the global minimum in a high-dimensional 
space is a general and non-trivial problem [65-67], such that only by repeating calculations 
for different start geometries may we hope to end up with the global totalenergy minimum. 

Since an open chain tends to shrink if the four outermost atoms are not fixed, we 
alternatively use a ring consisting of N atoms. Such a ring contains two sites between which 
the quasiperiodicity is interrupted. The consequence of this irregularity is the Occurrence of 
interface states. 

We first checked the whole procedure by performing calculations on a finite (N = 200) 
trans-polyacetylene chain (actually a ring molecule) using the standard values of Su ef a1 
[5%l] (i.e., to = 2.5 ev, a = 4.1 eV A*, E A  = E B  = 0, KI = 21.0 eV A' and Kz = 0). 
The SSH model has been extensively studied and reproduces the experimentally observed 
bond-length altemation for the neutral system. Thus, the so-called staggered coordinate 

X" = (-l)"u, (18) 

is a constant different from zero. The model predicts furthermore the Occurrence of solitons 
when the system is dilute doped. A soliton is related to a more or less localized change of 
sign in the staggered coordinate and induces an orbital with the major components close to 
the node of xn. Depending on whether xn changes from being positive to being negative 
or vice versa one distinguish between a soliton and an antisoliton. 

As expected, the optimized structure of the neutral system possesses a clear alternation 
in the bond length. The displacements U, of the carbon atoms parallel to the axis of the 
polymer, xn = 0.039 A zk 0.0013 A, are in good agreement with the theoretical results of 
Su er al (x, = 0.04 A). Upon doping with two electrons a well separated solitonantisoliton 
pair is created. This pair induces two energetically degenerate states in the middle of the 
energy gap separating valence and conduction bands. It is well known that the major part of 
such a state in trans-polyacetylene is localized over roughly 14 carbon atoms, and a(i) for 
these gap states compared with a(i) for the delocalized Bloch states thus gives an estimate 
of the changes in a(i) upon strong localization. 

In figure 2 we show therefore a(i) both for the neutral and for the doped system. As 
is seen, a well localized state (figure 2(b)) has an a value of about 5 x whereas 
extended states have a(i) N 5 x (see figure 2(a)). This is in qualitative agreement 
with ow studies on the potential well for which the energetically deepest state is localized 
to about ten atoms (- 10% of the total system size) and has an a(i)  value of about 0.1 
as compared to a state that is extended over 100 atoms, which has an a(i) value of about 
6 x However, the soliton-induced state is less localized than those of the potential 
well discussed in the preceding section. 
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0 t2-J-&A o L '  1 ,  .4 
100 200 

Fwre 2. Degree of localization a(i) of a finite trans-plyacetylene ring molecule containlng 
N = 200 sites. (a) corresponds to the neuual regular chaih whereas the chain of GJ) has been 
doped with two electrons. The latter case leads to two degenerate gap states induced by a 
soliton-antisoliton pair. These shes are those around the Fe& level. The vsrtkd broken lines 
separale occupied and unoccupied states. 

4. The Fibonacci lattice 

We now turn to quasiperiodic chains. As an example we study the Fibonacci structure. 
It consists of two different types of atom, A and B. and is generated recursively by the 
stacking rules S(n + I )  = S(n)  + S(n - 1) and D(n + 1) = D(n)D(n - 1). Here, S(n)  
is the number of atoms of the nth generation and D(n) represents the atomic sequence. 
The ratio lim,,,,[S(n)/S(n - I)] is given by the golden mean r = $(I  -I- 8). The 
Fibonacci lattice is a special case of the generalized Fibonacci structures, for which the 
stacking rules are S(n + I )  = [S(n)lP + [ S ( n  - 1)]4 and D(n + 1) = [D(n)lPID(n - I l lq  
with r (p ,q)  e Um,,,[S(n)/S(n - 111 = $(pz +4q)i  + PI. In our case we use D(I)  = 
A and D(2) = B corresponding to S(1) = S(2) = 1 .  r becomes then also the ratio between 
the numbers of A and B atoms. 

As mentioned above, the density of states of the Fibonacci lattice is self-similar whereas 
for the generalized Fibonacci lattice the existence of this property depends on the values 
of p and q [ 181. We first considered a ring containing the first 11 generations (232 atoms) 
as well as one with only the 14th generation (377 atoms) for which all U,  were set equal 
to zero. As mentioned in the previous section interface states tend to show up. Their 
importance could, however, be reduced by considering only one large generation. 

In figure 3 both the total density of states (nos) and the degree of localization a(i)  for 
the two systems are shown. In the smaller system (figures 3(a),(b)) interface states are those 
having the dominating a(i)  whereas these states are essentially absent in the larger system 
(figures 3(c).(d)). Othenvise, there is no significant difference between the results for the 
two systems, so we will only in the following consider the larger one. The interface states 
in the smaller system are also observed in the DOS as extra gap states (at - -3.6, -2.4, 
and 2 2  eV). 

We notice that the DOS (figure 3(c)) is approximately self-similar. Moreover, a(i) 
indicates that in contrast to the results of Mott for a disordered system [68] all states have 
the same order of magnitude in the degree of localization. As indicated from the results 
for a soliton in frans-polyacetylene, a well localized state (see section 3 and figure 2(b)) 
has an a(i)  value of the order of 5 x IO-' whereas all states in the large Fibonacci system 
have a(i) values of 3 - 7 x At most we may distinguish between energy intervals 
with more or less (de)lccalized states; the borders between them are marked with arrows in 
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Figure 3. The (a, c) total m and (b. d) degree of localization u(i)  of Ihe Fibonacci system with 
(a, b) the first 11 and (c, d) the 14th generation. No geometry relaxation is allowed, i.e. all U. 
are zero. The amws  in (d) separate more and less lacalized smm. 

figure 3(d). Alternatively, we may-as often is done-classify all the states as intermediate 
between localized and delocalized; i.e., as critical. 

We now allow the geometry to relax. The relaxation may destroy the pure 
quasiperiodicity such that in the case of an infinite system the states will no longer 
necessarily be critical. The flexibility of the system depends on the choice of the constants 
K1 and K2. For the rigid system we choose these parameters such that all U, values are 
close to zero (1u.l < 1.5 x IOw3 A) for the neutral (undoped) Fibonacci chain. lunl becomes 
then < 1.5 x A in the doped systems. Thereby the quasiperiodicity is only marginally 
disturbed. For EA = 1.5 eV, EB = -1.5 eV, a = 4.1 eV A, and to = 2.5 eV the values K1 = 
120.0 eV A2 and K2 = 14.0 eV A satisfy this condition. The values of to and a are those 
usually assumed to be realistic for trans-polyacetylene. 

The DOS and the degree of localization change only little upon geometry relaxation. For 
the doped system we present therefore only the changes in the degree of localization. In 
figure 4 cy(i) of the neutral system, and the change in the degree of localization upon doping 
with one (0.27%), 16 (4.2%) and 56 (14.9%) electrons are shown. The difference A&) 
before and after doping is usehl in exploring the change in the localization of the ith orbital. 
If Acy(i) > 0 the ith orbital becomes more localized upon doping. There is a general trend 
for the states above the Fermi level of the neutral system to become more localized upon 
doping while the change in the DOS is negligible. This tendency is stronger when more 
electrons arc added. It is moreover observed that the states at the Fermi level of both the 
neutral and the doped systems become more localized upon doping. Two remarks of caution 
are, however, relevant here. First of all, the lattice relaxations may lead to a situation where 
some orbitals change energetical order. This may show up as a relatively large and strongly 
oscillating Acy(i). Second, due to orthogonality of the orbitals, an increased localization 
of some orbitals results in changes of the localization of the other orbitals. Despite these 
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Figure 4. (a) ?he degree of l d i m t i o n  a(i)  of the neutral rigid Fibonacci system consisting 
of the 14th generation, (M) The changes ofo(i) upon doping wiih (b) one electron. (c) 16 
electrons, and (d) 56 electrons. A o ( i )  > 0 implies that the iih slate becomes more l o d i z d  
upon doping. The left-hand broken line in (c) and (d) marks the Fermi level of me neutral 
system whereas the right-hand one marks the Fenni level of the doped system. 

comments one of the important conclusions of this study is that the system tends to react 
upon doping by increasing the localization of the orbitals in the proximity of the Fermi 
level, thus reducing the conductivity. 

Finally, for the sake of completeness we mention that the system possesses certain 
symmetries. Interchanging 6~ and E B  and removing ne, instead of adding ne[ electrons 
lead to essentially identical results. This result is not restricted to the Fibonacci system. 
Furthermore, upon removing electrons instead of adding some exploratoIy calculations 
indicate that the main difference is that Aor(i) changes sign. In that case too, we do 
accordingly observe an increased localization of those orbitals that change occupancy. 

Choosing the parameters as E A  = 1.5 eV, E B  = -1.5 eV, U = 4.1 eV A, ro = 2.5 eV, 
K I  = 21.0 eV Az, and K2 = 0 we obtain a more flexible system. The lattice relaxation 
is relatively large (lu,[ 5 0.06A). For both systems, i.e., the smaller one containing the 
first 1 1 generations and the larger one containing only the 14th generation, a gap is created 
around the Fermi level (figures 5(a), 6(a)). Thereby the self-similarity in the ws is lost 
In figures 5(b) and 6(b) it can be seen that the orbitals closest to the Fermi level belong to 
the most localized states and that one of them for the larger system is actually an interface 
state. Furthermore, we found nodes in the staggered coordinate xn (figures 5(c), 6(c)). For 
the smaller system (figure 5) these nodes are well separated whereas for the larger one they 
are close (actually close to the interface). Comparing figures 5(c.d) and 6(c,d) we see that 
the uppermost occupied orbital is located to the nodes of x.. and by further comparison 
with the DOS curves (figures 5(a), 6(a)) it is observed that these states appear at energies 
where the unrelaxed system has a gap. 

The regularity of the staggered parameter x,, is remarkable: for the system containing 
nearly 400 atoms it takes only a few values. 

Upon doping with 56 electrons significant lattice relaxations are observed. This leads 
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Fiiure 5. (a) m, (b) m ( i ) .  (c) staggered cwrdinate x(i). and (d) wavefunction of Ihe highest 
occupied state of the neutral. flexible FiboMcci system with the first I 1  generations. 

to large changes in the DOS (figures 7(a), 8(a)). The highest occupied state is a gap state for 
the small system and is located near the interface. For the larger system the Fermi level is 
found in a 'band'. This results in differences in the degree of localization (figures 7@), and 
8@)). The geometry, shown here as the staggered coordinate xn, resembles that of a soliton 
lattice for the small system (figure 7(c)), i.e. xn changes sign almost regularly, whereas ,ye 
is less regular for the larger system (figure 8(c)). As for the undoped systems a number 
of orbitals close to the Fermi level (cf. figures 7(d) and 8(d)) are confined to a relatively 
small fraction of the total system. For the smaller system the dopinginduced increase in 

' the localization of the frontier orbitals of the doped system is readily observed (figure 7@)), 
whereas similar changes are largely absent for the larger system (figure 8(b)). 

In all the systems studied here a larger part of the orbitals closest to the Fermi 
level appear to be well localized, partly due to lattice relaxations. This indicates a low 
conductivity. We should, however, stress that phonons may assist the charge transport, e.g. 
by the formation of mobile polarons. This effect has not been included here but could be 
studied with the present model. 

5. Other quasiperiodic and incommensurable structures 

It has been reported [48,49,69] that the properties of an incommensurable sbucture for 
which the on-site energies obey 
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occupied sm of the neutral, flexible Fibonacci system with lhe 14th generation. 

where d / x  is an irrational number, depend on the parameters A and U. For ,'. < 2 and 
0 e v c 1 the properties are those of a purely incommensurable structure. A c 2 and 
v > 1 give, on the other hand, a so-called pseudo-random system for which all states are 
localized. 

Our criterion for the degree of localization confirms this differentiation. In figure 9 
we show the DOS and a(i) of systems for which the atoms A and B are randomly 
distributed (i.e., E,, assumes the two values k1.5 at random) as well as for systems with 
on-site energies given by equation (19). All parameters except for the on-site energies 
are chosen according to the rigid systems and ring molecules of N = 300 sites were 
studied. The DOS and the localization of the orbitals of the incommensurable system with 
the on-site energies E,  = 1.5 cos(3.5nZ) have the same characteristica as the system with 
the randomly distributed atoms. Both have one broad band without any gap, and the 
energetically lowest and highest orbitals are the mast localized orbitals, but the other states 
are also strongly localized. The incommensurable structure with the on-site energies obeying 
e. = 1.5 cos(3.5r1'.~) has much more regular DOS and a curves. When we compare with the 
results for the Fibonacci systems of the preceding section we observe a significantly larger 
average localization for the systems of figure 9. except for the last one. However, u(i) of 
figure 9@) is roughly a smooth function of i with a minimum for i 150, whereas the 
'sharp' changes of a(;) fori Y 20 and 280 in figure 9(d) may be an indication of mobility 
edges. Such edges are absent in figure 9(0 where only the s h q  peaks (due to the states 
that appear in the gaps around 5 3  eV in figure 9(e)) are remarkable. 

We also studied a generalized Fibonacci system 115, 18,381 for which the lattice was not 
allowed to relax. For the ninth generation with p = 2 and 9 = 1 there is no self-similarity in 
the Dos (figure IO(a)). Instead one notices a wide band around the energy zero. The states 
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Figure 7. (a) ws, (b) a( i ) ,  (c) staggered wordinate x(i),and (d) wavefunction ofthe highest 
occupied state of the flexible Fibonacci system with the first 11 generations upon doping with 
56 electrons. 

of this band are extended ( a ( i )  c 5 x whereas the other states are more localized 
(figure lO(b)). Moreover, there are edges in the degree of localization that one may identify 
as mobility edges in the sense of Moa. Thus, this system also differs significantly from the 
" m a l '  Fibonacci system. 

In the context of the one-dimensional quasiperiodic structures the so-called Thue-Morse 
potential is often studied [46,70-781. The sequence of the on-site energies cn is generated 
by using the rules S(n + 1) = 2S(n)  and D(n + 1) = D(n)D(n),  where D(n) is the inverse 
sequence of D(n)  (i.e., EA and E B  are interchanged). In our case we used D(1) = A. We 
calculated the DOS and the degree of localization for a ring with the tenth generation and 
did not allow for geometry relaxation (figure 1qc.d)). In the DOS there is obviously no 
self-similarity whereas the a values show variations of the same order of magnitude as 
those of the generalized Fibonacci system except for some strongly localized states. No 
clear mobility edges are observed. Since, however, a ( i )  of figure 1O(d) is comparable with 
that of figure 3(b) we believe that many of the results found for the Fibonacci system also 
are relevant for the Thue-Morse system. 

- - 

6. Conclusions 

The present paper has focused on electronic and structural properties of non-periodic, 
deterministic onedimensional chains. To this end we have developed a model that includes 
both electronic and structural degrees of freedom. The model includes a simple tight-binding 
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description of the electrons with one orbital per site and a harmonic approximation for the 
lattice part. The nearest-neighbour hopping integrals are allowed to vary as a function of 
bond length. Two parameter sets were considered: one (corresponding to a rigid system) 
for which the neutral system (= one electron per site) was essentially undisturbed, and one 
(a flexible system) for which the neutral system also experienced some lattice relaxations. 
We smss at this point that except for the relatively short communication by Pnevmatikos 
et al [53] this is the first time that such a model has been proposed for and applied to this 
class of systems. 

One of the main objectives of the present work was the interplay between localization 
and structure. It was hence crucial to have an accurate measure of the localization. We 
therefore compared various proposals as well as presenting our own, a, which was based 
on an autocorrelation function of the electron density. For a simple model system (I tumed 
out to be well correlated with the actual localization of the orbitals and to be comparable 
or superior to other proposals. In particular, (I appears to be useful when studying systems 
of intermediate size as synthesized in the laboratory. 

As the main application of the model we studied a Fibonacci chain. It was found that 
for the rigid system the lattice relaxations were minor (both for the neutral and the doped 
systems) such that the Dos essentially retained its self-similarity. This was contrasted by the 
results for the flexible system, for which the system relaxed, which in turn led to significant 
changes in the density of states. Except for one case we observed an increased localization 
of the orbitals around the Fermi level upon doping. This important result indicates that the 
conducting properties of the quasiperiodic materials may not be as controllable as one may 
think at first sight, but that the system opposes the doping by localizing the electrons. 
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Figure 9. (a.,c.e) ws and (b.d.0 degree of localization u(i) of a system for which 
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fm = 1.5 cos(3.5nZ) and (e,0 6” = 1.5 cos(3.5no.’). In dl three cases all h e  other parameters 
are the same as for the rigid F i b w i  system. 

As further examples of application of our model we studied briefly various quasiperiodic 
and incommensurable structures. For some of these (I could be used in demonseating the 
existence of mobility edges. 

The large present interest in non-periodic deterministic structures is partly due to 
diffraction pattems of the icosahedral phase of Ab.86 Mno.14. Since diffraction experiments 
has continued to be of importance in exploring the groperties of those structures, it would 
be interesting to extend the present study by including the calculation of diffraction pattems 
both for relaxed and for m l a x e d  structures. However, as demonstrated recently by KrajZf 
and Hafner [79], the lattice relaxations for the AI-Mn quasicrystals have only minor effects 
on the diffraction patterns. 

Another area that is often used in the study of quasiperiodic materials is their vibrational 
properties as determined, e.g., by Raman scattering. These also could be explored using the 
present model. 

Finally, we have discussed here localization as a means to obtain insight into the 
conducting properties of the material. However, phonon-assisted conductivity (e.g. through 
polarons) has been neglected and may-when included-lead to some modifications in our 
conclusions. These effects may be studied using our model. 



FLgure 10. ( b c )  DOS and @.d) the degree of localization uU) of (%b) .%generalired Fibonacci 
system with the ninlh generation and (c. d) a Thue-Mont system with the tenth generation. All 
un are set equal to zero for bolh systems. 
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