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Abstract. Using a model that includes both electronic and structural degrees of freedom we
stady one-dimensional structures that are non-periodic but deterministic, The model allows us
to follow structural changes induced by changing the number of electrons (i.e., upon doping).
Special emphasis is put on localization versus delocalization of the orbitals as a means of
estimating the conducting properties. To this end various measures for quantifying the degree of
localization are compared and a new one--based on an autocorrelation function of the eleciron
density—is presented. As an example of the application of our model we examine the Fibonacci
structure in detail. It is found that the well known self-similarity in the density of states of the
undistorted system may be lost upon relaxation and/or doping. As a general result observed both
for Fibonacci structures and for other quasiperiodic and incommensurable systems we find that
those orbitals that become occupiedfemptied upon doping increase their localization indicating
less variability of the conductivity,

1. Introduction

Electronic and vibrational properties of systems for which the potential is incommensurate
with the underlying nuclear backbone continues to be of interest. Such situations occur in,
e.g., charge-density-wave (CDW) systems such as the MX; materials (M = transition metal;
X = chalcogenide) (see e.g., [1]) as well as for crystals in magnetic fields (for a recent
reference, see [2]). Some of the first studied materials within this concept include MnAus
[3], NaNO; [4], Hgs_,AsFg [5], and Na,CO; [6]. The subject gained renewed interest as
unexpected diffraction patterns for an icosahedral phase of the Alg gs Mng, 14 alloy (a so-called
quasicrystal) were reported by Shechtman et al [7]. These patterns indicated the existence of
ordered but aperiodic (*quasiperiodic’) structures. It was subsequently demonstrated [8, 9]
that one may understand these as the diffraction patterns of a regular higher-dimensional
lattice projected onto the three-dimensional space. As a one-dimensional analogue one
may construct systems with quasiperiodic potentials by projecting two-dimensional regular
lattices onto certain lines (see, e.g., [8, 9]}

In this context the Fibonacci lattice has been considered as the one-dimensional
prototype of the quasicrystals [10, 11].

Another reason for the interest in Fibonacci lattices is that they possess a self-similar
density of states [12-17] whereas generalized Fibonacci structures of higher order can lose
this characteristic [18].

One-dimensional quasiperiodic structures are, moreover, of direct experimental
relevance after the reports of successful synthesis of quasiperiodic GaAs-AlAs [19,20] and
Nb—Cu [21] heterostructures. Moreover, it has recently been argued [22] that quasiperiodic
magnetic lattices may be used in polarizing neutrons.
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In the present work we will distinguish between incommensurable and quasiperiodic
structures by defining the latter as systems for which the on-site energies (see below} oniy
take a few discrete values, whereas for the former they span a continuous, finite interval.
The Fibonacci chain is an example of a quasiperiodic chain.

One of the central issues in the studies of quasiperiodic and incommensurable one-
dimensional structures is to what extent the (electronic, vibrational, photonic, etc) states are
localized. it is well known that—within a single-particle picture—all states are delocalized
for a purely periodic infinite one-dimensional system, whereas for the equivalent random
system they are all localized [23-25]. On the other hand, incommensurable one-dimensional
systems have both localized and delocalized states separated by mobility edges [26,27]
whereas ali states of the infinite Fibonacci chain are critical [14, 16,27, 28]. However,
synthesized quasiperiodic systems have finite lengths, in which case the separation into
localized, delocalized, and critical states is less obvious. Moreover, ‘localization’ is not
uniquely defined. Thus, in a number of studies the classification into localized and
delocalized states is performed merely by a subjective look at selected states (see, e.g.,
f29-401). Only recently have more direct measures of the degree of localization been
introduced. These include the resistance as calculated by the Landauer formula [41-45] and
the thereto-related inverse localization length [46,47]. Moreover, the Lyapunov exponent
has been vsed, e.g., by Das Sarma et al [48,49] and by Farchioni et ¢l [50]. On the other
hand, Hirose et af [51] used the inverse participation ratio, whereas Varga ef af {52] studied
both the spatial filling factor and the structural entropy. Finally, Pnevmatikos et al [53]
used the participation function, which is equivalent to the information entropy of Varga et
al [52].

One of the objectives of the present work is to compare various of the proposed measures
for a simple system for which an intuitive feeling for the localization is easily developed.
In addition we shall propose a new measure that seems to be consistent with the immediate
expectations. This will form the basis of section 2.

Subsequently, we shall report results of a theoretical study of the electronic properties
of one-dimensional quasicrystals. In the case of more or less localized states it may be
speculated that the conducting properties of these materials can be varied over many orders
of magnitude by controlled doping. However, the system may respond to the doping
by modifying the underlying lattice structure thereby ultimately leading to changes in the
localization of the orbitals. A further purpose of the present work is therefore to present a
model that takes this effect into account. To our knowledge there has only been one related
study aimed at this interplay between structure and localization in incommensurable one-
dimensional systems [33]. Our model is related to but differs in important aspects from that
of Pnevmatikos et el [53]. Moreover, Pnevmatikos ef al focused on an mcommensurable
structure whereas we shall concentrate on a quasiperiodic system.

We write the total Hamiltonian of our system interest as a sum of an electronic part and
a lattice part. For the electronic part we use a tight-binding Hamiltonian

ﬁg = anézen - an.n+l(5:+;én + E;:l-en+1)- (D
n n

i

Here, ¢, and &, are the annihilation and creation operators, respectively, of an electron
on site n, €, are the on-site energies, and f, 41 the nearest-neighbour hopping integrals.
We shall here for the sake of simplicity neglect the spin variable and allow thus each
orbital to contain up to two electrons. Furthermore, we include only one orbital per site.
As a representative example of a quasiperiodic system we study the Fibonacci lattice for
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which the on-site energies €, take one of two vaiues according to the Fibonacci sequence.
Alternatively, one may allow the hopping integrals to oscillate. This possibility will,
however, not be considered here. It should be mentioned at this point that the Fibonacci
chain has been the subject of a number of other theoretical studies (see, e.g., [35], [38],
[39), [47], [50], [51] and [54]). However, as a (more realistic) generalization we will here
allow the hopping integrals ¢, 5,1 to depend on the bond lengths, such that the system is
allowed to react against doping. This will be discussed in detail in section 3. A detailed
discussion of the results for the Fibonacci lattice is presented in section 4 and some other
quasiperiodic and incommensurable systems for which the on-site energies ¢, are non-
periodic but deterministic will be discussed briefly in section 5. We conclude in section 6.
For the sake of completeness we add that a preliminary version of the present work has
been published elsewhere [55].

2. Degree of localization

We consider a ring molecule or a linear chain consisting of a large number N of sites. For
this we solve the Schridinger equation

N N
Ho Y Cintn =61 ) CinGn @
n=1 n=1

where ¢, is the Wannier orbital of the nth site. In our own calculations we shall exclusively
consider ring molecules. In order to guantify the localization of the ith eigenfunction we
define an autocorrelation function G;(m) of the electronic density as

N
Gimy =Y _ |ct,| et uim| m=0,1,...,N=1. 3)
n=}

We use the first 20% of the terms in fitting to a Gaussian by minimizing:

29172
[ Zl (G i(m) + G (m + 1) — InG;(0) exp[—a(i)(m — '%)2]) ]

T1 e (Gim)+Gim+ 1)
X[FZm( 5 )] (@)

P m=1

By studying the average of G;(m) and G;{m+ 1) we smear out certain oscillatory behaviours
that occur in G;(m), e.g., for solitons in trans-polyacetylene. Since our typical system size
is 200-400 sites we use typically N, =~ 50 terms in the fit. (i) is subsequently used as
our measure of the degree of localization. Since a(7) is larger (smaller) for more localized
(delocalized) states we may relate «r(f)} to an inverse localization length, a(i) is in addition
related to the participation function P(i) = [G;(®)]' of Pnevmatikos er al [53). By
studying the autocorrelation function we obtain information about the localization of our
state of interest independent of where it is actually localized. The parametrization (4) is a
way of quantifying the short-range to intermediate-range behaviour of the function G;(m)
with a single parameter a(i). In fitting with a Gaussian we indirectly assume the state to
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be localized inside a potential of approximately harmonic shape. We stress that this way
of quantifying the localization is independent of the type of system and is computationally
efficient.

Alternatively, one may quantify the localization using quantities related to the Lyapunov
exponent, which for self-averaging systems is

1 i 1
= lim — . = lm — . 5
T(E)= lim — lnTr(L! M,(E)) Jim InTr{ My (E)] (5)
Here, M;(E) is the ith 2 x 2 transfer matrix. One may show [36] that

entti| FiCN
lensral + lewaf?

jeraf”

() = NETw(zN)-‘ In )]

Das Sarma et al [48,49] used instead y(i) = (1/N)In |c~+1,,-/c1,,-] for finite system sizes
N. y{(i) quantities the degree of localization far away from the region where the state is
actually localized. Thus, ¥ (#) may be better in describing the localization for large systems,
but for our systems of interest (polymers or semiconducting heterostructures as presently
synthesized in the laboratory) the system size N may only be considered intermediate and
we therefore consider a(f) more appropriate.

Varga et af [52] studied the spatial filling factor g(i) defined as

q() = P()/N =[G, (O] /N. (7)

Finally, various measures based on the Landauer formula [41,57] have been used. This
formula gives the resistance #; of the ith orbital of a finite system embedded into a perfect
material with no resistance;

ri = (2nhfe ) p; (8)
where
or = {1/[4 = ter/ VoL H{(MBY + (MB)? + (MBY? + (MB)?

+ (e Vo) (MY = MEYME - ME) - [/ | MEME-2) @

with &; being the eigenvalue of the ith orbital, ¥, an external potential {(we choose Vp =
30.0 eV). Instead of studying p; directly we will consider In{g; + 1}. At this point it is
relevant to mention that Das Sarma and Xie [58) have also considered the resistance of a
quasiperiodic system. They, however, did not study the resistance as a function of orbital
index ¢ but as a function of the energy of the incoming electron. On the other hand, in
applying equation (9) we implicitly assume the ith orbital to define the Fermi level, which
may or may not be true but which allows a detailed look at each orbital separately.

In order to compare e (i), £(i), ¥ (), g(i), and In(p; + 1} we examined a simple system
consisting of a potential well formed by ten neighbouring sites inserted into a ring of 100
atoms. We use the Hamiltonian H, of equation (1) and set the one-site energies €, of the
sites forming the potential well equal to —50 eV below those of the others. All hopping
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integrals were set gqual to 2.5 eV. In figure 1 we show In{p; + 1), «(f), g{i), and ¥{i)
of this simple system (notice that P({) and ¢(i) are related through equation (7)). In
studying ¥ (i) and p: we neglect the conceptual problems in using (6) and (9) for a dng
molecule. The ten orbitals with the lowest energy are those localized inside the well and the
resistance of these orbitals is correspondingly very high. From the first to the tenth orbital
the resistance decreases as larger parts of the orbitals protrude from the well. «(f) shows
a thereto related behaviour, whereas the spatial filling factor g(i) lacks this characteristic
differentiation between the energetically lowest orbitals. Moreover, the inverse localization
length (i) appears not to be correlated with the resistance of the states and thus with the
intuitively expected behaviour. It is moreover noticed that In{p; + 1) increases as a function
of i for i > 10 with an approximately constant slope, whereas a7} is roughly constant in
this interval. This difference can be explained from the dependence of g; on the external
potential Vp (see equation (9)). On the other hand, ¢(/) shows some variation for i between
58 and 67, which appears to be uncorrelated with the actual localization or shape of the
orbitals.
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Figure 1. (2) The resistance In{o; + 1), (b) our criterion of the degree of localization (i), {¢)
the spatial filling factor ¢{i), and (d) the inverse localization length ¥ (i) of a potential well of
ten neighbowring atoms with on-site energies ¢, = —50 eV embedded in a ring of 100 atoms
with ¢, = 0. All quantities are shown as functions of orbital index i,

In order to obtain an idea of the quality of the fit of equation (4) we add that for the
first ten states A(f) lies in the range between 0.1 and 0.2, and for the extended states (i =
11110} A(i) is less than 0.1, Since the fit of equation (4) involves only one parameter,
we find this quality satisfactorily. In total e(i) is accordingly seen to correlate well with
the actual localization, and we shall therefore use this measure throughout the rest of the
paper.
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3. The model

In order to study the structure and the electronic orbitals of arbitrary chains or ring molecules
consisting of two types of atom (A and B) and having one orbital per site we use a modified
Su—Schrieffer-Heeger (ssH) [59-61] model. Qur model Hamiltonian H contains thereby
one {tight-binding)} part He for the clectrons (see equation (1)) and a remainder (Fy) for the
Iattice energy:

H = H.+ H. (10)
The hopping inteprals t; n4 are linearized in the bond lengths:
tonil = b = @{Un41 — Up) (1)

which is a good approximation for small displacements u, of the atoms. #; is the hopping
integral for the undisturbed system (&, = 0) and a is an electron-phonon coupling constant.
The on-site energies €, take two values €4 and €5 depending on the type of the corresponding
atom.

The iattice energy B, is written as

" 1
Hi=> Z [K)\ @t — u)? + K2Gtnar — tn}(1 = 8y e0) ] (12)

The Kronecker symbol ensures that the second term on the right-hand side vanishes for
identical neighbours.

We define the neutral system as one with one electron per site and seek then for given
€a, €3, fg, and « the constants K and K, such that the average |u,] is as small as possible
for the structure with the lowest total energy Ey = Ej + E.. We shall refer to this system
as the rigid one.

In addition we study systems where we take over the parameter values of $SH except
for the two different types of on-site energy. This system will be called flexible. Compared
with the model of Pnevmatikos et al [53] we have defined the neutral system as one with

one electron per site, whereas they use zero electrons per site. Therefore, Pnevmatikos et
al have K, =10.

Since we are interested in lattice relaxations it is crucial to be able to optimize the

structure automatically for any given number of electrons. This is achieved by using the
forces as follows.

According to the adiabatic (Born—Oppenheimer) approximation the motion of the atoms
is described by trajectories following Newton’s law [62-64]:
mii, = Fp = —8 Eyo/0up. (13)
The force F, is the sum of a lattice part

Fro=—=K1Qu, — gy —tg-1) — KZ(SG,..G,..‘.; - 85..5,,..1) (14)

and an electronic part

Fe.n = ""2“(Pn.n—l - Pn.n+1)' (]5)



Localization and relaxation in non-periodic structures 6931

Here, F, ,, is the bond-order matrix
N
Pow =Y _bic},Cim (16)
i=1

where b; is the occupation number of the ith orbital.
The optimal geometry is calculated iteratively using

u = RN 4y (17)

with § < 1 and j being an iteration index. § is proportional to the square of a time step. It
should be mentioned here that the identification of the global minimum in a high-dimensional
space is a general and non-trivial problem [65-67], such that only by repeating calculations
for different start geometries may we hope to end up with the global total-energy minirmum.

Since an open chain tends to shrink if the four outermost atoms are not fixed, we
alternatively use a ring consisting of N atoms. Such a ring contains two sites between which
the quasiperiodicity is interrupted. The consequence of this irregularity is the occurrence of
interface states,

We first checked the whole procedure by performing calculations on a finite (N = 200)
trans-polyacetylene chain (actually a ring molecule} using the standard values of Su ez al
[59-61] (ie., tg = 2.5eV,a =4.1eV A% ¢4 = e = 0, K, = 21.0 eV A? and K, = 0).
The $5H mode] has been extensively studied and reproduces the experimentally observed
bond-length alternation for the neutral system. Thus, the so-called staggered coordinate

Xn = (—1)"uy, (18)

is a constant different from zero. The maodel predicts furthermore the occurrence of solitons
when the system is dilute doped. A soliton is related to a more or less localized change of
sign in the staggered coordinate and induces an orbital with the major components close to
the node of y,. Depending on whether x, changes from being positive to being negative
or vice versa one distinguish between a soliton and an antisoliton.

As expected, the optimized structure of the neutral system possesses a clear alternation
in the bond length. The displacements u, of the carbon atoms parallel to the axis of the
polymer, x, = 0.039 A+00013 A, arein good agreement with the theoretical results of
Su eral (x, = 0.04 A). Upon doping with two electrons a well separated soliton—antisoliton
pair is created. This pair induces two energetically degenerate states in the middle of the
energy gap separating valence and conduction bands. It is well known that the major part of
such a state in trans-polyacetylene is localized over roughly 14 carbon atoms, and a(f) for
these gap states compared with er(7} for the delocalized Bloch states thus gives an estimate
of the changes in (i) upon strong localization.

In figure 2 we show therefore (i) both for the neutral and for the doped system. As
is seen, a well iocalized state (figure 2(b)) has an & value of about 5 x 10~ whereas
extended states have a(f) =~ 5 x 10™* (see figure 2(a)). This is in qualitative agreement
with our studies on the potential well for which the energetically deepest state is localized
to about ten atoms (~ 10% of the total system size) and has an (i) value of about 0.1
as compared to a state that is extended over 100 atoms, which has an «(i) value of about
6 x 10~*. However, the soliton-induced state is less localized than those of the potential
well discussed in the preceding section.
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Figure 2. Degree of localization a{i) of a finite trans-polyacetylene ring molecule containing
N = 200 sites. (a) corresponds to the neutral reguiar chain, whereas the chain of (b) has been
doped with two electrons. The latter case leads to two degenerate gap states induced by 2
sotiton-antisoliton pair. These states are those around the Fermi level. The vertical broken lines
separate occupied and unoccupied states.

4. The Fibonacci lattice

We now turn to quasiperiodic chains. As an example we study the Fibonacci structure,
It consists of two different types of atom, A and B, and is generated recursively by the
stacking rules S(n + 1) = $(n) + S(n — 1) and D{n + 1) = D(n)D(n — 1), Here, S(n)
is the number of atoms of the nth generation and D{(n) represents the atomic sequence.
The ratio lima—oolS(%)/S(n — 1)] is given by the golden mean T = (1 + +/5). The
Fibonacei lattice is a special case of the generalized Fibonacci structures, for which the
stacking rules are S(n + 1) = [§(n)]? + [S(n — 1))? and D(n + 1) = [D@)P[D(n — DI?
with T(p, ) = lim,_ ,[S)/S(n — D] = 12[(172 +44)} + pl. In our case we use D(1) =
A and D(2) = B corresponding to S(1) = $(2) = 1. = becomes then also the ratio between
the numbers of A and B atoms.

As mentioned above, the density of states of the Fibonacci lattice is self-similar whereas
for the generalized Fibonacci lattice the existence of this property depends on the values
of p and ¢ [18]. We first considered a ring containing the first 11 generations (232 atoms)
as well as one with only the 14th generation (377 atoms) for which all u, were set equal
to zero. As mentioned in the previous section interface states tend to show up. Their
importance could, however, be reduced by considering only one large generation.

In figure 3 both the total density of states (DOS) and the degree of localization (i) for
the two systems are shown. In the smaller system (figures 3(a),(b)) interface states are those
having the dominating (i) whereas these states are essentially absent in the larger system
(figures 3(c),(d)). Otherwise, there is no significant difference between the results for the
two systems, so we will only in the following consider the larger one. The interface states
in the smaller system are also observed in the DOS as extra gap states (at ~ —3.6, 2.4,
and 2.2 eV),

We notice that the DOS (figure 3(c)) is approximately self-similar. Moreover, (i)
indicates that in contrast to the results of Mott for a disordered system [68] all states have
the same order of magnitude in the degree of localization. As indicated from the results
for a soliton in frans-polyacetylene, a well localized state (see section 3 and figure 2(b)}
has an (i) value of the order of 5 x 10~ whereas all states in the large Fibonacci system
have «(i) values of 3 —7 x 107%. At most we may distinguish between energy intervals
with more or less (de)localized states; the borders between them are marked with arrows in
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Figure 3. The (a, ) total pos and (b, d) degree of localization (i) of the Fibonacei system with
(a,b) the first 11 and {c,d) the 14th generation. No geometry relaxation is allowed, ie. all u,
are zero, The arrows in (d) separate more and less localized states.

figure 3(d). Alternatively, we may—as often is done—classify all the states as intermediate
between localized and delocalized; i.e., as critical.

We now allow the geometry to relax. The relaxation may destroy the pure
quasiperiodicity such that in the case of an infinite system the states will no longer
necessarily be critical. The flexibility of the system depends on the choice of the constants
K; and K. For the rigid system we choose these parameters such that all u, values are
close to zero (|u,| < 1.5x 1073 A) for the neutral (undoped) Fibonacci chain. |u,| becomes
then < 1.5 x 10~2 A in the doped systems. Thereby the quasiperiodicity is only marginally
disturbed. Foreq = 1.5eV, e = —1.5eV,a=4.1eV A, and £ = 2.5 eV the values K| =
120.0 eV A? and K, = 14.0 eV A satisfy this condition. The values of # and a are those
usually assumed to be realistic for trans-polyacetylene,

The DOS and the degree of localization change only little upon geometry relaxation. For
the doped system we present therefore only the changes in the depree of localization. In
figure 4 a(7) of the neutral system, and the change in the degree of localization upon doping
with one (0.27%), 16 (4.2%) and 56 (14.9%) electrons are shown. The difference Aw(i)
before and after doping is useful in exploring the change in the localization of the #th orbital.
If Aar(i) > O the ith orbital becomes more localized upon doping. There is a general trend
for the states above the Fermi level of the neutral system to become more localized upon
doping while the change in the DOS is negligible. This tendency is stronger when more
electrons are added. It is moreover observed that the states at the Fermi level of both the
neutral and the doped systems become more localized upon doping. Two remarks of caution
are, however, relevant here. First of all, the lattice relaxations may lead to a situation where
some orbitals change energetical order. This may show up as a relatively large and strongly
osciilating Aa(i). Second, due to orthogonality of the orbitals, an increased localization
of some orbitals results in changes of the localization of the other orbitals. Despite these



6934 K Schmidt and M Springborg

T T

i

M

ofi)

5x107*

100

s PR S TR T T

!:J R BT . ] ;
00 300 100 200 300
t

?

Figure 4. (a) The degree of localization (i) of the neutral rigid Fibonacci system consisting
of the 14th generation. (b—d) The changes of @({} upon doping with (b) one electron, (¢} 16
electrons, and (d) 56 electrons. Aw{/) > 0 implies that the /th state becomes more localized
upon doping. The left-hand broken line in (¢) and (d) marks the Fermi level of the neutral
system whereas the right-hand one marks the Fermi level of the doped system.

comments one of the important conclusions of this study is that the system tends to react
upon doping by increasing the localization of the orbitals in the proximity of the Fermi
level, thus reducing the conductivity,

Finally, for the sake of completeness we mention that the system possesses certain
symmetries. Interchanging €4 and eg and removing n, instead of adding n. electrons
lead to cssentially identical results. This result is not restricted to the Fibonacei system.
Furthermore, upon removing electrons instead of adding some exploratory calculations
indicate that the main difference is that Ac(i) changes sign. In that case too, we do
accordingly observe an increased localization of those orbitals that change occupancy.

Choosing the parameters as €4 = 1.5 eV, eg = —1.5eV,a = 4.1 eV A, 1p = 2.5 €V,
K; = 21.0 eV A?, and K» = 0 we obtain a more flexible system. The lattice relaxation
is relatively large (u,| < 0.06 A). For both systems, ie., the smaller one containing the
first 11 generations and the larger one containing only the 14th generation, a gap is created
around the Fermi level (figures 5(a), 6(a)). Thereby the self-similarity in the DOS is lost.
In figures 5¢(b) and &(b) it can be seen that the orbitals closest to the Fermi level belong to
the most localized states and that one of them for the larger system is actually an interface
state. Furthermore, we found nodes in the staggered coordinate x, (figures 5(c), 6(c)). For
the smaller system (figure 5) these nodes are well separated whereas for the larger one they
are close (actually close to the interface). Comparing figures 5(c,d) and 6(c,d) we see that
the uppermost occupied orbital is located to the nodes of x,, and by further comparison
with the DOS curves (figures 5(a}, 6(2)) it is observed that these stales appear at energies
where the unrelaxed system has a gap.

The regularity of the staggered parameter x, is remarkable: for the system containing
nearly 400 atoms it takes only a few values.

Upon doping with 56 electrons significant lattice relaxations are observed. This leads
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Figure 5. (a) pos, (b) a(i), (c) staggered coordinate y (i), and (d} wavefunction of the highest
occupied state of the neutral, Rexible Fibonacci system with the first 11 generations.

to large changes in the DOS (figures 7(a), 8(a)). The highest cccupied state is a gap state for
the small system and is located near the interface. For the larger system the Fermi level is
found in a ‘band’. This results in differences in the degree of localization (figures 7(b), and
8(b)). The geometry, shown here as the staggered coordinate Y, resembles that of a soliton
lattice for the small system {figure 7{c)), i.e. x» changes sign almost regularly, whereas x,
is less regular for the larger system (figure 8(c)). As for the undoped systems a number
of orbitals close to the Fermi level (c¢f. figures 7(d) and 8(d)} are confined to a relatively
small fraction of the total system. For the smaller system the doping-induced increase in

" the localization of the frontier orbitals of the doped system is readily observed (figure 7(b)),
whereas similar changes are largely absent for the larger system (figure 8(b)).

In all the systems studied here a larger part of the orbitals closest to the Fermi
level appear to be well localized, partly due to lattice relaxations. This indicates a low
conductivity. We should, however, stress that phonons may assist the charge transport, e.g.
by the formation of mobile polarons. This effect has not been included here but could be
studied with the present model.

5. Other quasiperiodic and incommensurable structures

It has been reported [48,49,69] that the properties of an incommensurable structure for
which the on-site energies obey

€, = A cos{dn") (19)
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Figure 6. (a) pos, (b) e(i), (c) staggered coordinate x (/},and (d) wavefunction of the highest
occupied state of the neutral, fAexible Fibonacci system with the 14th generation.

where d/x is an irrational number, depend on the parameters A and v. For A < 2 and
0 < v < | the properties are those of a purely incommensurable structure, A < 2 and
v > 1 give, on the other hand, a so-called pseudo-random system for which all states are
localized.

Our criterion for the degree of localization confirms this differentiation. In figure 9
we show the DOS and «(i) of systems for which the atoms A and B are randomly
distributed (i.e., ¢, assumes the two values £1.5 at random) as well as for systems with
on-site energies given by equation (19). All parameters except for the on-site energies
are chosen according to the rigid systems and ring molecules of N = 300 sites were
studied. The DOS and the localization of the orbitals of the incommensurable system with
the on-site energies €, = 1.5 cos(3.57%) have the same characteristica as the system with
the randomly distributed atoms. Both have one broad band without any gap, and the
energetically lowest and highest orbitals are the most localized orbitals, but the other states
are also strongly localized. The incommensurable structure with the on-site energies obeying
én = 1.5 c0s(3.5n°%) has much more regular DOS and « curves. When we compare with the
results for the Fibonacci systems of the preceding section we observe a significantly larger
average localization for the systems of figure 9, except for the last one. However, a(i) of
figure 9(b) is roughly a smooth function of i with a minimum for { =~ 150, whereas the
‘sharp’ changes of «(i) for { = 20 and 280 in figure 9(d) may be an indication of mobility
edges. Such edges are absent in figure 9(f) where only the sharp peaks (due to the states
that appear in the gaps around +3 eV in figure 9(e)) are remarkable.

We also studied a generalized Fibonacci system [15, 18, 38] for which the lattice was not
allowed to relax. For the ninth generation with p = 2 and g = 1 there is no self-similarity in
the DOs (figure 10(a)). Instead one notices a wide band around the energy zero. The states
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Figure 7. (a) pos, (b) afi), (c) staggered coordinate y (/).and (d) wavefunction of the highest
occupied state of the flexible Fibonacci system with the first 11 generations upon doping with
56 electrons.

of this band are extended (¢({) < 5 x 10™%) whereas the other states are more localized
{(figure 10(b)). Moreover, there are edges in the degree of localization that one may identify
as mobility edges in the sense of Mott. Thus, this system also differs significantly from the
‘normal’ Fibonacci system.

In the context of the one-dimensional quasiperiodic structures the so-called Thue-Morse
potential is often studied [46,70-78]. The sequence of the on-site energies ¢, is generated
by using the rules S(n+ 1) = 28(n) and D(n -+ 1) = D(n) D(n), where D(n) is the inverse
sequence of D{n) (i.e., €4 and ep are interchanged). In our case we used D{1) = A. We
calculated the pOS and the degree of localization for a ring with the tenth generation and
did not allow for geometry relaxation (figure 10(c.d}). In the DOS there is obviously no
self-similarity whereas the o values show variations of the same order of magnitude as
those of the generalized Fibonacci system except for some strongly localized states. No
clear mobility edges are observed. Since, however, &(f) of figure 10(d) is comparable with
that of figure 3(b) we believe that many of the results found for the Fibonacci system also
are relevant for the Thue-Morse system.

6. Conclusions

The present paper has focused on electronic and structural properties of non-periodic,
deterministic one-dimensional chains. To this end we have developed a model that includes
both electronic and structural degrees of freedom. The model includes a simple tight-binding
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of the highest occupied states of the flexible Fibonacci system with the 14th generation upon
doping with 56 electrons.

description of the electrons with one orbital per site and a harmonic approximation for the
lattice part. The nearest-neighbour hopping integrals are allowed to vary as a function of
bond length. Two parameter sets were considered: one {corresponding to a rigid system)
for which the neutral system (= one electron per site) was essentially undisturbed, and one
(a flexible system) for which the neutral system also experienced some lattice relaxations.
We stress at this point that except for the relatively short communication by Pnevmatikos
et al [53] this is the first time that such a model has been proposed for and applied to this
class of systems.

One of the main objectives of the present work was the interplay between localization
and structure. It was hence crucial to have an accurate measure of the localization. We
therefore compared various proposals as well as presenting our own, &, which was based
on an autocorrelation function of the electron density. For a simple model system « turned
out to be well correlated with the actual localization of the orbitals and to be comparable
or superior to other proposals. In particular, &« appears to be useful when studying systems
of intermediate size as synthesized in the laboratory.

As the main application of the model we studied a Fibonacei chain. It was found that
for the rigid system the lattice relaxations were minor (both for the neutral and the doped
systerns} such that the DOS essentially retained its self-similarity. This was contrasted by the
results for the fAexible system, for which the system relaxed, which in turn led to significant
changes in the density of states. Except for one case we observed an increased localization
of the orbitals around the Fermi level upon doping. This important result indicates that the
conducting properties of the quasiperiodic materials may not be as controflable as one may
think at first sight, but that the system opposes the doping by localizing the electrons.
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Figure 9. (a,c,e) pos and (b,d,f) degree of localization «(i) of a system for which
{a,b) the atoms A and B are randomly distributed, {c,d) the on-site energies are given by
€y = 1.5 c0s(3.5n2) and (e, ) &, = 1.5 cos(3.57%). In all three cases all the other parameters
are the same as for the rigid Fibonaccl system.

As further examples of application of our model we studied briefly various quasiperiodic
and incommensurable structures. For some of these & could be used in demonstrating the
existence of mobility edges.

The large present interest in non-periodic deterministic structures is partly due to
diffraction patterns of the icosahedral phase of Alpge Mng 14. Since diffraction experiments
has continued to be of importance in exploring the properties of those structures, it would
be interesting to extend the present study by including the calculation of diffraction pattemns
both for relaxed and for unrelaxed structures. However, as demonstrated recently. by Krajél
and Hafner [79], the lattice relaxations for the Al-Mn quasicrystals have only minor effects
on the diffraction patterns.

Another area that is often used in the study of quasiperiodic materials is their vibrationai
properties as determined, e.g., by Raman scattering. These also could be explored using the
present model.

Finally, we have discussed here localization as a means to obtain insight into the
conducting properties of the material. However, phonon-assisted conductivity (e.g. through
polarons) has been neglected and may—when included—lead to some medifications in our
conclusions. These effects may be studied using our model.



6940 K Schmidt and M Springborg
S A R L R R e B
_ :? L (b}
it ' "1 of
= F E X
[Ch R o
= r 1 =m
s 1°%
" 3 -
g r -
F M ' o e
Ee — Pt 3 -
:1’:} i l l < LB S B I S S S B S
| «aH 4
51 0 ]
a L 1%
2 ¢ ‘ H 1 n
L, Hﬁ . LM ) M n L. L] w\h
_5 0 5 Py MR M S AR
Energy {eV) 100 200
1
Figure 10. (a,c) pos and (b, d) the degree of localization «(f) of (a,b) a generalized Fibonacei
system with the ninth generation and (¢, d} a Thue—Morse system with the tenth generation, All
ly are set equal to zero for both systems.
Acknowledgments

We would like to thank Professor Wolf Weyrich for stimulating discussions and for providing
us with a pleasant research atmosphere.

References

1

2]
(3]
(41
(5]

(6]

7

(8]

(1
[10)
(1]
[12]
[13]
[14]
[13]
[16]
f17]
i18]
[19]

Bari§ié¢ S 1985 Electronic Properties of fnorganic Quasi-One-Dimensional Compounds ed P Monceau
(Dordrecht: Reidei) p 1

Fishinan S, Shapir ¥ and Wang X-R 1992 Phys. Rev. B 46 12154

Herpin A, Mériel P and Villain J 1959 C. R. Acad. Sci., Paris 249 1334

Tanisaki S 1962 J. Phys. Soc. Japan 16 579

Brown I D, Cutforth B D, Davies C G, Gillespie R 1, Ireland P R and Vekris ] E 1974 Can. J. Chem. 52
791

de Wolff P M and von Aalst W 1972 Acta Crystatlogr. A 28 8111

Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951

Zia R K P and Dallas W J 1985 J, Phys. A: Math. Gen. 18, 1341

Elser V 1985 Phys. Rev. B 32 4892

Levine D and Steinhardt P J 1984 Phys. Rev. Lent, 53 2477

Michel C R 1985 Acad, Sci. Paris, 1. 300 11 18 909

Dotera T 1988 Phys. Rev. B 38 11534

Miyazaki H, Watanabe T and Inoue M 1992 J. Phys. Soc. Japan 61 1069

Kohmoto M and Banavar J R 1986 Phys. Rev. B 34 563

Inoue M, Takamori T and Miyazaki H 1991 J. Phys. Soc. Japan 60 3460

Kohimoto M, Sutherland B and Tang C 1987 Phys. Rev. B 35 1020

Nori F and Rodriguez J P 1986 Phys. Rev. B 34 2207

Yan X H, Zhong J X, Yan J R and You } Q 1992 Phys. Rev. B 46 6071

Merlin R, Bajema K, Clarke R, Juang F-Y and Bhattacharya P K 1985 Phys, Rev. Lett, 55 1768



[20)
[21]

[22]
[23]
[24]
{251
[26]
271
(28]
[29]
[30]
[3i]
321
[33]
[34)
[35)
(361
[371
[38]
(391
[40]
[41]
[42]
[43]
(441
[45]
146)
(471
[48]
[49]
[501
i51]
(521
[53]
[54]
[551
[56]

157
{58]
[59]
[60]
[61]
[62]
[63]
[64]
165]
[66]
[67]
[681
(691
7]
(7]
{72}
£73)
(74]
(75]
{76l

Localization and relaxation in non-periodic structures 6941

Todd J, Merlin R, Clarke R, Mchanty K M and Axe J D 1986 Phys. Rev. Leit, 57 1157

Carlotti G, Fioretto D, Palmieni L, Socino G, Verdini L, Xia H, Hu A and Zhang X K 1992 Phys. Rev. B
46 12717

Huang D and Gumbs G 1992 Solid State Commun. 84 1061

Anderson P W 1958 Phys. Rev. 109 1492

Halperin B I 1967 Adv. Chem. Phys. 13 123

Abrahams E, Anderson P W, Licciardeilo D C and Ramakrishnan T V 1979 Phys. Rev. Lett, 42 673

Dy K 8§ and Ma T C 1983 J. Phys. C. Solid State Phys. 15 6971

Aubry § and Andre G 1980 Ann. Isr. Phys, Soc. 3 133

Ostund 5, Pandit R, Rand D, Schellnhuber H J and Siggia E D 1983 Phys. Rev. Lett. 50 1873

Lu J P, Odagaki T and Birman J L 1986 Phys, Rev. B 33 4809

Soukoulis C M and Economou E N 1982 Phys. Rev. Let. 48 1043

Kohmoto M, Kadanoff L P and Tang C 1983 Phys. Rev. Lett. 58 1870

de Lange C and Janssen T 1983 Phys. Rev. B 28 195

Chao K A, Riklund R and Wahlsirdm G 1985 Phys. Scr. 32'455

Chao K A, Riklund R and Liu Y-Y 1985 Phys. Rev. B 32 5979

Machida K and Fujita M 1986 J. Phys. Soc. Japan 55 1759

Evangelou § N 1987 J. Phys. C: Solid State Phys. 20 L295

Hiramoto H and Kohmoto M 1989 Phys. Rev. B 40 8225

You J Q. Yan J R, Xie T, Zeng X and Zhong J X 1991 J. Phys.: Condens. Matter 3 7255

Xu W 1990 Soiid State Cormnmun. 82 645

Zhong J X, You J Q and Yan J R 1992 J. Phys.: Condens. Matter 4 5959

Landauer R 1970 Phil. Mag. 21 863

Sokoloff J B 1980 Phys. Rev. B 22 5823

Langreth D C and Abrahams E 1981 Phys. Rev. B 24 2978

Stone A D and Joannopoulos I D 1981 Phys. Rev, B 24 3592

Stone A D, Joannopoulos J D and Chadi D J 1981 Phys. Rev. B 24 5583

Ry C S, OnGY and Lee M H 1952 Phys. Rev. B 46 5162

OCh G Y, RyuC S and Lee M H 1992 J. Phys.: Condens. Matter 4 8187

Das Sarma S, He § and Xie X C 1988 Phys. Rev. Lerr. 61 2144

Das Sarma S, He § and Xie X C 1990 Phys. Rev. B 41 5544

Farchioni R, Grosso G and Parravicinl G P 1992 Phys. Rev. B 45 6383

Hirose K, Ko D Y K and Kamimura H 1992 J. Phys.: Condens. Matter 4 5947

Varga I, Pipek J and Vasvéri B 1992 Phys. Rev. B 46 4978

Pnevmatikos St, Yanovitskii O, Fraggis Th and Economou E N 1992 Phys. Rev. Leut, 68 2370

Peng R W, Hu A, Jiang § 5, Zhang C S and Feng D 1992 Phys. Rev. B 46 7816

Schmidt K and Springborg M 1993 Symth. Met. 55-57 4473

Lifshits 1 M, Gredeskul S A and Pastur L A 1988 [ntroduction to the Theory of Disordered Systems (New
York: Wiley) pp 140

Pichard ¥ L 1986 J. Phys. C: Solid State Phys. 19 1519

Das Sarma S and Xie X C 1988 Phys. Rev. B 37 1097

Su W P, Schrieffer ] R and Heeger A J 1979 Phys. Rev. Lert. 42 1698

Su W P, Schrieffer } R and Heeger A J 1980 Phys. Rev. B 22 2099

Su W P, Schrieffer ] R and Heeger A J 1983 Phys. Rev. B 28 1138

Su W P and Schrieffer J R 1980 Proc. Nai! Acad. Sei. USA 77 5626

Fémer W, Wang C L, Martino F and Ladik J 1988 Phys. Rev. B 37 4567

Fomer W 1980 Synth. Mer. 30 135

Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689

Wille L T and Vennik J 1985 J. Phys. A: Math. Gen. 18 LA19

Wille L T and Venrik J 1985 J. Phys. A: Math. Gen, 18 L1113

Mot N F 1968 Phil. Mag. 17 1259

Griniasty M and Fishman S 1988 Phys. Rev. Lert. 60 1334

Ishida M, Kamigaki K, Morioka T, Kato H, Sano N and Terauchi H 1992 J. Phys. Soc. Japan 61 149

Huang D, Gumbs G and KoldF M 1992 Phys. Rev. B 46 11479

Inoue M, Ogawa T and Miyazaki H 1989 Solid State Commun. T1 731

Cheng Z, Savit R and Merlin R 1988 Phys. Rev. B 37 4375

Axel F and Peyriére J 1989 J, Star. Phys. 57 1031

Rikiund R, Severin M and Liu Y 1987 Int. J. Mod. Phys. B 1 121

Qin M G, Ma H R and Tsai C H 1990 J. Phys.: Condens. Matter 2 1059



6942 K Schmidt and M Springborg

[77]1 La Rocea G C 1989 Sofid State Commun. 70 115
(78] Axel F, Allouche } P, Kléman M, Mendés-France M and Peyriere J 1986 J. Physique Coll. 47 C3 181
{791 Krajdf M and Hafner J 1992 Phys. Rev. B 46 10669



